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SUMMARY 

A simplified model is analyzed in order to  give some insight into the effects of buoy- 
ancy and shear flow on turbulence. Two- point correlation equations, which contain mean 
velocity and temperature gradients, as well as body force terms, can be constructed 
from the Navier-Stokes, energy, and continuity equations. While previous papers by the 
author considered the effects of shear and buoyancy separately, the present paper con- 
siders their combined effects. In that case the ratio of buoyancy to  shear effects, as 
given by the Richardson number, is a consideration. The velocity and temperature gra- 
dients, as well as the body force, are considered to be vertical and uniform. 

An initial value problem in which the turbulence is initially isotropic is solved to il- 
lustrate the effect of buoyancy and shear parameters on the turbulence. The initially iso- 
tropic turbulence quickly becomes anisotropic under the influence of the buoyancy and 
shear. Although the turbulence is assumed to  be weak enough for terms in the equations 
containing triple correlations to be negligible, a term proportional to  the velocity gradi- 
ent transfers energy between wave numbers. Various components of the mean turbulent 
fluctuations and their spectra, as well as the ratio of eddy conductivity to eddy viscosity, 
are calculated as functions of buoyance and shear parameters. For highly stabilizing 
conditions, the interaction of the shear and buoyancy forces with the turbulence can pro- 
duce negative eddy conductivities and viscosities. The analytical results are compared 
with available experimental data. 

INTRODUCTION 

The effects of buoyancy and of shear on weak homogeneous turbulence are considered 
separately in reference 1 and 2. In real situations, for instance in the atomsphere, the 



two effects often occur simultaneously. The speculative theories given in references 3 
and 4 consider that case. 

the combined effects of buoyancy and shear on homogeneous turbulence. Correlation equa-- 
tions for velocities and temperatures at two points in the turbulent field are constructed 
from the Navier-Stokes, energy, and continuity equations. In order to obtain a determi- * 

nate set of equations, the turbulence is assumed to be weak enough ,to neglect the te rms  
in the equations containing triple correlations. Although this assumption may limit the 
upper Reynolds number for which the analysis is valid, the analysis is of interest in itself, 
in that it gives an asymptotically exact solution for turbulence in the limit of low Reynolds 
numbers. Moreover, when mean velocity and temperature gradient te rms  are present in 
the equations, the turbulence may not have to be as weak as it would otherwise for the 
triple correlation terms to be negligible compared with the other terms. As will be seen 
later, comparison of the analysis with experiment indicates that the theoretical results 
bear a correspondence with real turbulence at  moderate Reynolds numbers. 

the next section. 

In the present paper, the methods used in references 1 and 2 are extended to analyze 

The correlation and spectral equations required in the analysis will be considered in 

BASIC EQUATIONS 

The Navier-Stokes equation with buoyancy effects included can be written as (ref. 5) 

where the subscripts (except e) can take on the values 1, 2, or  3, and a repeated sub- 
script in a term signifies a summation. The quantity 'iii is an instantaneous velocity 
component, !i! is the instantaneous temperature, xi is a space coordinate, t is the time, 
p is the density, v is the kinematic viscosity, p is the instantaneous pressure, gi is a 
component of the body force, and p E -(l/p)(ap/aT) is the thermal expansion coefficient P 
of the fluid. The quantities Te and pe are the equilibrium temperature and pressure, 
respectively. (All symbols are given in the appendix. ) In obtaining the last te rm in equa- 
tion (1) (buoyancy term), the density is assumed to  depend effectively only on tempera- 
ture and is not far removed from its equilibrium value (value it would have for no heat 
transfer). Note that the equilibrium temperature is uniform whereas the equilibrium 
pressure is not. The instantaneous velocities and temperatures in equation (1) can be 
divided- into mean and fluctuating components as follows: 
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5 .  = u. + u. 1 1 1  

N 

T = T + T  (3) 

~ Then, if equation (1) is averaged, and the averaged equation is subtracted from the unav- 
eraged one, 

Taking the divergence of equation (4) (differentiating with respect to xi) and using continu- 
ity give 

The instantaneous energy equation can be written as 

Substituting equations (2) and (3) in equation (6), averaging, and subtracting the averaged 
equation from the unaveraged one give 

2 ar aT aT +---=a a(Tuk) a77 a 7  
- at + uk % + uk- &k &k &k axk % 

Equations (4), (5) ,  and (7) apply at a point P in the turbulent fluid. Similar equations at 
another point P' can be obtained simply by priming the variables and changing the sub- 
script i to, say, j . Equations involving correlations between fluctuating quantities at 
P and P? can then be constructed by methods similar to those used in references 1, 2, 
and 6. In fact, the equations considered in those references are special cases of those 
obtained here. 
and temperature gradients are 

The resulting equations for homogeneous turbulence with uniform velocity 
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Equations (8) to (15) form a determinate set if the turbulence is weak enough to ne- 
glect terms containing triple correlations in comparison with the other terms. They can 
be converted to  spectral form by introducing three-dimensional Fourier transforms de- 
fined as follows: 

J- a3 

where is the wave number vector and dT= dK1 d~~ d ~ ~ .  The magnitude of 7 has the 
dimension l/length and can be considered to be the reciprocal of a wavelength or eddy 
size. Then, from equation (16) (see eq. (lo), ref. 7), 
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The remainder of the paper will present the case where the velocity and the temper- 
~ 

ature gradients are in the x3-direction (vertical) and the body force (gravity) is in the 
-x3-direction. Then, let 

g -g3 

dU1 

% 
a = -  

dT b = -  
&3 

(27) 

and neglect te rms  containing triple correlations; equations (8) to (15) become, in spectral 
form, 

2 a p .  a q  . . 
lJ- (iK.A! - i K . A . )  - 2 V K  (0.. + p s .  gy. +P6.  gy! 3 1  i3-aK1---- 3 1  1 J  11 13 J 33 1 3 . 6 .  aqg j+6 .  aq 

aK3 P 
11 at 

a6 a5 2 -+by; +b3 - aK1-=  - 2 a ~  6 
aK 3 at 

ari ?vi 2 1  
at  aK3 P 
- + bqi3 + adilyg - a K 1  - = -(CY + V)K y i  + - i K i c  + Pfli36 

1 2  
P 

- - K A! = -2ak1qi3 + PgiK3y; 
1 
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- - 1 2  K A .  = 2 a i ~ ~ c p ~ ~  - PgiK3yj 
J P 

- - 1 2  K 5 = 2 a i ~ ~ y i  - P g i ~ ~ 6  
P 

- - 1 2  K * = - 2 a i ~ ~ y ~  + P g i ~ ~ 6  

P 

where 6 .. is the Kronecker delta. Substitution of equations (32) to (35) into equa- 
tions (28) to (31) shows that cp. .  = qji and yi = y; for all times if they are equal at an 
initial time. It will be assumed herein that the turbulence is initially isotropic and that 
the temperature fluctuations are initially zero, so that the above relations will hold. 
Thus, the set of equations (28) to (35) becomes 

9 
13 

a6 a6 2 - = a K 1  - - 2bY3 - 2CYK 6 
at aK3 

Equations (36), (37), and (38) give contributions of various processes to the rates of 
change of spectral components of u.u., mi, and 72, respectively. The second term in 
each equation is a transfer term which transfers activity into or out of a spectral compo- 
nent by the stretching or compressing of turbulent vortex filaments by the mean velocity 
gradient, as discussed in references 2, 6, and 7. The terms with K~ in the denomina- 
tor a r e  spec tr a1 components of pres sur e - veloc it y o r  pressure - temper atur e correlations 
and transfer activity between directional components (ref. 2). The terms proportional 
to Pg and &ii3 (or 6 .  ) are buoyancy terms which augment or diminish the activity in a 
spectral component by buoyant action. The last terms in the equations are dissipation 
terms, which dissipate activity by viscous effects (eq. (36)) or  by conduction effects 

- -- 
1 3  

33 
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(eq. (38)). The dissipation term in equation (37) contains both viscous and conduction ef- 
fects, inasmuch as it dissipates spectral components of velocity-temperature correla- 
tions. The remaining terms in the equations produce activity by velocity or temperature 
gradient effects. Although a buoyancy term does not appear in equation (38), buoyancy 
affects 6 (or 72) indirectly through the temperature gradient and y (or TU ). 

at t = t 

- - 
3 3 

For solving equations (36) to (38), the turbulence is assumed to be initially isotropic . 

That condition is satisfied by the relation 0' 

Jo 2 (cp..) = - ( K  6 . .  - K . K . )  
13 1 3 

O 12a2 
(3 9) 

where Jo is a constant that depends on initial conditions (ref. 2, eq. (43)). For the ini- 
tial conditions of 6 and yi (at t = to), it is assumed that 

That is, the turbulence-producing grid is assumed to be unheated, so that the temperature 
fluctuations a r e  produced by the interactions of the mean temperature gradient with the 
turbulence. 

SOLUTION OF SPECTRAL EQUATIONS 

In order to reduce the set of partial differential equations, equations (36) to (38), to 
ordinary differential equations, the running variables 5 and q are considered, of which 
K~ and t are particular values such that 5 = K~ when q = t. If 5 and 17 are intro- 
duced into the set  of equations in place of K~ and t, the resulting equations will, of 
course, automatically satisfy the original set. In addition, 

5 + aK1(q - qo) = constant 

during integration. Then 

where the subscripts outside the parentheses signify quantities which are held constant. 
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Then equations (36) to (38) become 

Pg 
a 

+-  + 2v 
aK 1 

9 13 

Note that the first three of these equations are independent of the remaining ones. 

may be determined by letting 6 = 5 
tion applies for any value of 5, and thus 

The constant in equation (41) subject to the initial conditions, equations (39) and (40), 
when q = uo, or  5 = 5 + aK1(q - qo). This equa- 
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Equation (50) gives the value of 5 at  which to.start  the integration for given values of K 3’ . 

K ~ ,  a, and t -  to. The initial conditions, equations (39) and (40), may be satisfied by letting 

1277” 

0 when 5 = f  

The integration of equation (43) to (49) then goes from t o  to 5 = K ~ .  

‘Pij, Yi ,  and 6 ,  for which 5 = K~ and 17 = t are of interest. The quantity 5 can be con- 
sidered as a dummy variable of integration. 

The following dimensionless quantities are introduced in order to convert equa- 
tions (43) to (49) to dimensionless form: 

Final values of 

v yf = - 
Job yi 
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6*=-- V6 

Job2(t - to) 
(5 5) 

a* = (t - tO)a (56) 

Pgb 
2 a 

RI =- 

V Pr = -  
CY 

(57) 

In addition, spherical coordinates are introduced into the equations by using the trans- 
formations 

K~ = K cos cp sin 8 

K~ = K s in  cp sin 8 

K 3  = K cos e 

Equations (43) to (49) then become 

(59) 

5 *2 a*Ri 
K* cos <p sin 8 t K*2 sin2e + 6 

= - 4  5 *V33 - 2  
dcp33(5 *) 

*2 d5* K*2 sin2e + E  

*2 

a*K* cos cp sin 8 
+ 2  K*2  sin2e + 5  cpz3 (60) 

- 5 *2 (1- K*2 sin2e + 
- $3 25 *Y3* a*Ri6 * - dY;a *) 

%*  a * K *  cos cp sin 8 K*2 sin20 + *2 K *  cos cp sin 8 

Y3' (61) K*2  sin2e + 5 *2 
a * K *  cos cp sin 8 
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@ * a*K* cos cp sin e Pr a * K *  cos cp sin e 

a* K* cos cp sin 8 

a*Riyf a*R@ *y$ K*2 sin2e + e  *2 - 
q T3 + 2  

K *  cos cp sin 8 

4 ~ *  cos cp sin 0 c p f 3  2a*Ri5 *yT 
- - 2(pT3 - + dcp tie *) 

@ *  K* cos cp sin e K*2 sin2e + *2 K*2 sin26 + 5 *2 

*2 

a * K *  cos cp sin 8 
cpj1 (64) + 2  K*2 sin2e + 5 

' 11 
K *  cos cp sin 6 K *  cos cp sin e a * K *  cos cp sin 8 

- cp i 3  1 )G cos cp sin 8 - 
*2 K* cos cp sin 8 

a*Rit *e * + - dYZiE *) 

d[* a*K* cos cp sin 8 K*2 sin2e + 

*2 
K*2 sin2e + 5 

a*K* cos cp sin 8 
r; (66) 

For integrating these equations, E* starts at 

E $  = K* cos e + a * K *  cos cp sin 8 

where 
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*") ~ P T ~ ( E * )  =- (K*2 s i n  cp sin e + 5 0 
1 2 

12s2 

I I -  

ri 

'ij 
\k! . 

1.l 
A ? .  :: 4 =//- 

* ( t * )  =- 1 (K*2 sin 2 e + t o  *2 ) 
r) q ii 

- 
q i j  

Y i  

'ij 

6 
K~ sin 8 d q  de 

q!. 
1.l 

a!. 
11, 

6s" 

y p  *) = 6 *([*) = 0 

and goes to  K* cos 8 where 

q$(t*) = @.(K* COS e) 
11 

The integrations were carried out numerically on a high-speed computer for various fixed 
values of K * ,  8 ,  q, a, and Ri. Directionally integrated spectrum functions can be ob- 
tained from (refs. 6 and 7) 

In this equation, 51.. is the vorticity spectrum tensor given by reference 8. 
1.l 

13 



The primed quantities q!. and aij give, respectively, components of q.. 1.l and 52.. 1J in 
a coordinate system rotated 45’ about the x2-axis from the xl-axis toward the x3-axis. 
Since q.. and 51.. a r e  second order tensors, components in the rotated system are 

9 4 
(ref. 9) 

. 
1.l 

and 

The spectrum functions given by equation (67) can be integrated over all wave num- 
bers to give 

‘ij 

ri 

A 

A . .  
4 

Q!. 
4 

A!.  
. 9 

d K  

where the primes again refer to components in a coordinate system rotated 45’. 
puted spectra and correlations will be considered in the next section. 

Com- 

RESULTS AND DISCUSSION 

All the calculated results given in this section a r e  for a gas with a Prandtl number -* 
of 0.7.  Dimensionless energy spectra spectra of q) and spectra of 7 2  

14 
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in figures 1 and 2. The spectra a re  plotted for several values of a* = (t - t0)dUl/dx3 
and of g* = pg(t - to) dT/dx3. The parameter g* rather than the Richardson number 
Ri = pg d T / d ~ ~ / ( d U ~ / d x 3 ) ~  is used here since the use of g* and a* enables us  to con- 
sider buoyancy and shear effects separately. (The Richardson number contains both 
buoyancy and shear effects. ) The quantity g* is related to Ri and a* by the equation 

2 

*2 g* = a Ri 

When plotted by using the similarity variables shown in figures 1 and 2, the dimen- 
sionless spectra for no buoyancy and shear effects g* = a* = 0 do not change with time, 
and thus comparison of the various curves indicates how buoyancy and shear effects will 
alter the spectra. 
g* = a* = 0, the turbulent activity for that case is greater than it would be for no buoy- 
ancy and shear effects. The turbulence itself decays with time, as in references 1 and 2. 

Positive values of the buoyancy parameter g* correspond to stabilizing conditions, 
and negative values correspond to destabilizing conditions. Figures 1 and 2 show that the 
trends with g* for a case with shear (a* = 2) are similar to those from reference 1 for 
no shear (a* = 0). That is, in the destabilizing case, buoyancy forces tend to feed energy 

Thus, if  a dimensionless-spectrum curve lies above the curve for 

0 . 4  . 8  1.2 1.6 2.0 2.4 2.8 
Dimensionless wave number, K* = J 2 ( t  - t 0 ) 1 4  

Figure 1. - Dimensionless spectra of turbulent energy 
uiui*. Prandtl number, 0.7. 
- 

. 
*a 
c- 
0 .- 
P 
=I 
c 

5 

a 

Shear parameter, 
a* = (t - to)dUl/dx3 

--- 

0 . 4  . 8  1.2 1.6 2.0 2.4 2.8 

Dimensionless wave number, Ko = "1% - 

ance ~2 . Prandtl number, 0.7. 
Figure 2. - Spectra of dimensionless temperature vari- 

-0 
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or activity into the turbulent field, whereas in the stabilizing case they tend to extract it. 
Comparison of the curves with shear (solid curves) with those without shear (dashed 
curves) for values of g* of -4, 0, and 4 indicates that for all three cases the effect of 
the shear is to feed energy or activity into the turbulent field. Thus for the destabilizing 
case, the buoyancy and shear have similar effects; but for  the stabilizing case, they have 
opposite effects. Comparison of the curve in figure 1 for g* = 4 and a* = 2 with that 
for a* = g* = 0 indicates that for the former curve the energy added by the shear effects 
approximately balances that extracted by buoyancy but that the wave number distributions 
for the two processes are slightly different. 

number sides of the curves becoming more gradual. The dot-dashed curves for an a* 
of 4 and a g* of 1.6 are plotted to show this effect. As in references 2, 6, and 7, the 
effect is due to the transfer of energy or activity into the high-wave-number regions by 
the transfer term associated with the mean velocity gradient (see the discussion in the 
paragraph following eq. (38)). 

The buoyancy forces might be expected to act more strongly on the turbulent velocity 
components lying in the direction of those forces than on the other components. This ex- 
pectation is confirmed in the plot of -/q u i  for a* = 0 in figure 3. The ratio u y u f  is 
greater than 1 in the destabilizing case and less than 1 in the stabilizing case. However, 
although U ~ / U ;  becomes small, it does not approach zero for highly stable conditions. 

Apparently "21 begins to decrease as rapidly as, or more rapidly than u!, as g* be- 
comes large. 

The voriticity component ratio u?j/uf is also plotted in figure 3. The trends for 

As a* increases, the spectra become asymmetric, the slopes on the high-wave- 

- -  

_ _  

- - 

- -  

5- 
c- 

Temperature 
gradient stabilizing 

Vort icit y-var iance 

/ Velocity-variance 
CompoEnLratio, 

-4 -2 0 2 4 6 
Buoyancy parameter, g* - ps(t - t0I2611dx3 

Figure 3. - Velocity and vorticity-variance component 
ratios pldted against buoyancy parameter for case of 
no shear. Prandtl number, 0.7. 

- -  - _  
u u w :  are opposite to those for u 'I 3 ul' For 
the stabilizing case, the voriticity tends to  be 
alined in the direction of the buoyancy forces. 
The turbulent velocities associated with that vor- 
ticity will then tend to be normal to the buoyancy 
forces, in agreement with the curve for ~ V U ? .  
For the destabilizing case, the vorticity tends 
to lie in directions normal to the buoyancy forces. 
That will tend to increase ~ V U ?  as shown in 
figure 3, although the ratio will not approach in- 
finity, because even if all the vorticity lies in 

u# will not be zero. 

buoyancy forces were considered on the turbu- 

- -  

-- 

- 
directions normal to the buoyancy forces, u1 2 or - 

In the preceding discussion, the effect of 
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lence components without mean shear. Next, 
consider the case of shear with no buoyancy 
effects. In that case, the turbulent vorticity 
(or vortex filaments) would be expected to 
tend to aline in the direction of maximum 
strain, which is at 45' to the mean velocity. 
Figure 4 shows turbulent vorticity and velocity 
components ratios in a coordinate system ro- 
tated 45' counterclockwise about the x2-axis. 

0 1 2 3 4 5 If the vorticity were all alined in the direction 
of maximum strain, a$1/w! '  would be zero. 
The curve shows that there is a strong tend- 
ency for that alinement to occur at moderate 
values of a*, but the degree of alinement 

4- 

w U 

Vorticity-variance 

Shear parameter, a* - (t - toMUl/dx3 

Figure 4. - Velocity- and vorticity-variance com- 
ponent ratios in coordinate system rotated 45" 
plotted against shear parameter for case of no 
buoyancy effects. 

- -  

L m 
F 
c .- 
8 
f 
- 

-4 -2 0 2 4 6 
Buoyancy parameter, g* - mt - t,?dT/dx3 

Figure 5;- Zot shwing velocity-variance component 
ratio u$/u: as a function of buoyancy and shear 
parameters. Prandtl number, 0.7. 

does not continue to improve as a* becomes 
large. The tendency for the vortex filaments 
to aline in the direction of maximum strain is 
reflected in the trend for the turbulent velocity 
components to become maximum in a direc- 
tion normal to the maximum strain, as shown 
in the curve for ugyuf ' .  The degree of 
alinement, however, does not continue to im- 
prove as a* becomes large. 

Combined effects of buoyamcy and shear 
on uf/uf are shown in figure 5. The curves 
show that for no buoyancy effects (g* = 0) the 
turbulence component ug, which is in the di- 
rection of the mean velocity gradient, is re- 
duced in comparison with uf by the shear. 
This trend also occurs for negative (destabil- 

- -  

- -  

- 

- 

izing) values of g* and for small positive 
(stabilizing) values of g*. For more strongly stabilizing conditions, the trends become 
more complex, and the curves cross over one another. 

The effects of buoyancy and shear a re  considered separately in figure 5, which uti- 
lizes the parameters g* and a*. Since the Richardson number contains both buoyancy 
and shear effects, one might suppose that its use would reduce or eliminate the need for 
another parameter. Figure 6 shows that is not the case, since ug/uf is a strong func- 
tion of both Richardson number and a*. 

The ratio of two turbulence components which are normal to the body forces and 

- -  
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BgdTIdx3 
Richardson number, R i  - ~ 

IdUl/dx3)‘ 

Figure 62- !ot showing velocity-variance component 
rat io u$/ui as a funct ion of Richardson number 
and shear parameter. Prandtl number, 0.7. 

4 c 
Temperature Temperature 

destabilizing stabilizing 
c gradient gradient 

!IT -a 1.0 

L .e- 

8 

c al c 

Shear parameter, 
a* - (t - toMUl/dx3 

21 3 0 

? Z  2 

I s I 

m .- 
c - 

4 - 
. 4  

-4 -2 0 2 4 6 
Buoyancy parameter, g* - BgCt - to)2dT/dx3 

Figure 7.-- plat showing velocity-variance component 
ratio u$/uf as a function of buoyancy and shear 
parameters. 

mean velocity gradient plotted as a function of g* and a* are shown in figure 7. For 
no shear (a* = 0), ug/uf is 1 since the turbulence is axially - -  symmetric. For a* # 0, 
the shear tends to destroy the axial symmetry and to reduce ug/ut below 1. 

Temperature-velocity correlation coefficients -7u3 -/(>)l’2(q)l’2 are plotted in fig- 
ure  8.  The correlation 7u3 is proportional to the turbulent heat transfer in the direction 
of the temperature gradient. The unusual feature of these results is that changes 
sign as g* becomes large. That is, for  very stable conditions, the turbulence begins to  
pump heat against the temperature gradient. This phenomenon was observed in the re- 
sults of reference 1 for an a* of zero. As a* increases, the value of g* at which 

- -  

Consider next the turbulent heat transfer and the turbulent shear stress. 

- 

- 
changes sign increases. Tu3 
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Shear parameter, 

-.4- 

. 2 -  

0 

-.2 

-.4 

-‘!4 -\ -!? 0 a 6 
Buoyancy parameter, g* - NCt - t0)’dT/dx3 

Figure 8. - Plot s h w i n g  temperature-velocity correlation 
coefficient -F/?1’2$1’2 as a function of buoyancy 
and shear parameters. Prandtl number, 0.7. 

- 
heat transfer 

- 

gradient ature gradient 
destabilizing stabilizing 

I I 

4 .8- 

.6- 

.4- 

.2 -  

0 

-2 

f l  
Abnormal t L  
lent shear s -- 

c \  - . 2 -  Temperature Temper- 

imerer, 
dU1ldxg 

tress 

Figure 9. - Plot showing velocity-velocity correlation coefficient 
-m/q1’2q112 as a function of buoyancy and shear para- 
metars. 

Velocity-velocity correlation coefficients for shear are plotted in figure 9. At small 
values of g*, the trends with a* a re  opposite to those for figure 8; the values of 

%/(ui) (u:) are zero for a* = 0, while the value -- of  AT^) (u3) are 
close to 1 for small a* and g*. A s  was the case for T U ~ ,  ~ 1 ~ 3  changes sign as g* be- 
comes large. As conditions become strongly stabilizing, the turbulence begins to pump 
the fluid in such a way as to tend to increase the velocity gradient. Thus, there occurs, 
for sufficiently large values of g*, a negative eddy viscosity as well as a negative eddy 
conductivity. Although a negative eddy conductivity can occur with only buoyancy effects 
present, the occurrence of a negative eddy viscosity requires combined buoyancy and 
shear effects. 

ductivity can be given in terms of a modified mixing length theory as illustrated in 

- 1/2 - 1/2 - 1/2 2 1/2 

A possible explanation for the theoretically observed negative eddy viscosity and con- 
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figure 10. Normal turbulent heat transfer 

(r\ x 
a- u 
E 
c VI - 
n 

or shear stress is shown in the left portion 
of the figure. An eddy originating at the shear stress 0 

i 

Nor mal turbulent 
heat shear transfer stress / or 

mean velocity and temperature of the fluid 
at a point may move either upward or down- 
ward. By conduction and viscous effects, it  . 
will tend to  acquire the local mean temper- 
ature and velocity of the fluid as it moves, 
and thus its path will curve toward the mean 
velocity or temperature line. When the eddy 
mixes with the fluid, it will tend to  decrease 
the mean temperature and velocity gradients. 
The effective eddy conductivity and viscosity 

::> At point of mixing 
0 At point of origin of eddy 

V will be positive since they act in the same 
Temperature or velocity in xl-direction 

Figure 10. - Sketch illustrating possible mechanism for pro- 
direction as the molecular conductivity and 
viscosity. 

By contrast, for the abnormal case 
ducing negative eddy conductivity and viscosity. 

where the buoyancy forces are strongly stabilizing, the original direction of motion of an 
eddy may be reversed. This reversal might happen because the buoyancy force, in the 
stabilizing case, acts in the direction opposite to that in which the eddy s tar ts  to move. 
Possible paths for the eddy on the distance- temperature or distance-velocity plane under 
these conditions a re  sketched on the right side of figure 10. As shown, the eddy path can 
cross  the mean temperature or velocity line. As the eddy mixes with the fluid, it  will 
then tend to increase the mean temperature and velocity gradients, and thus the effective 
eddy conductivity and viscosity will be negative. The actual mechanism may be more 
complicated than that considered here. The preceding explanation is given only to  show 
that negative eddy conductivities and viscosities are physically reasonable. The turbulent 
heat transfer and shear stress do not necessarily change sign at the same value of g*, 
since the eddy paths on the distance-temperature plane and on the distance-velocity plane 
may be different because of differences between the conduction and viscous effects on the 
eddy as it moves. Comparison of figures 8 and 9 shows that the turbulent shear s t ress  
changes sign first as g* increases. 

The ratio of eddy conductivity to  eddy viscosity plotted against g* is shown in fig- 
u re  11. The eddy conductivity and eddy viscosity are defined by the relations 
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Figure 12. - P l d  showing correlation coefficient 
TiTi/?1'2~1'2 as a function of buoyancy and 
shear parameters. Prandtl number, 0.7. 

and 

- 
The ratio ch/E is calculated from 7Uz/(ulug/a*). For small values of a*, E h/E de- 
creases with increasing g* except for large g*. For an a* of 4, E ~ / E ,  increases with 
increasing g*. The sharp increases in E , , / €  near the ends of the curves occur because 
the eddy viscosity approaches zero and changes sign near those points. 

Values of the correlation coefficient % / ( T ~ )  (ul) 

-I 

- 1/2 2 1/2 
are presented in figure 12. - 

The correlation Tu1 is proportional to turbulent heat transfer in the xl-direction. The 
fact that there should be heat transfer in the xl-direction is surprising since there is a 
temperature gradient only in the x3-direction. It appears, however, that Tu1 can be 
nonzero because of the nonzero values of  TU^ and u1u3. Since there is a correlation 
between T and u3 and between u3 and ul, the fact that a correlation should occur be- 
tween T and u1 seems reasonable. It must be admitted, though, that heat transfer in a 
direction of zero temperature gradient runs contrary to normal intuition. 
noted that the effect is not dependent on the  presence of buoyancy forces (i. e . ,  g* can be 
zero). The turbulent heat transfer in the xl-direction is not necessarily small compared 
with that in the x3-direction. Figure 13, which shows plotted values of -m3/Tul, indi- 
cates that the turbulent heat transfer in the two directions can be of the same order of 
magnitude. 

- 
- - 

It should be 

-- 

Comparison of the present analytical results with available experimental data is of 
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Figure 13. - Plot showing temperature-velocity correlation 
component ratio TT~ITT~ as a function of buoyancy 
and shear parameters. 

interest in order to see if there is a corre- 
spondence. Experimental data for grid- 
generated turbulence in the presence of com- 
bined buoyancy and shear effects a r e  pre- 
sented in references 10 and 11. A compari- 
son between analysis and the data obtained at 
station 5 in reference 11 is given in figure 14. 
The various turbulence ratios are plotted 
against Richardson number rather than 
against g*, since (t - to) in g* is hard to 
estimate because of uncertainties in the initial 
and other conditions in the experiment. For 
the same reason, no attempt is made to cal- 
culate a* = (t - to) dUl/dxg directly for the 
experiment. The data and analysis for 
u$ /ug at Ri = 0 indicate a value for a* of 
about 2, and that value is used throughout the 
comparison. A reasonable correspondence 

- -  

u 
0 .2 . 4  .6  .8 

Figure 14. - Comparison of analytical results wi th experimental data at 
station 5 in reference 11. Shear parameter, a* - 2. 

22 



exists between analysis and experiment for the various turbulence ratios and correlation 
coefficients except in the last plot. Conditions in the analysis and experiment differ. 
For instance, the analysis assumes that the temperature fluctuations arise from the in- 
teraction of the mean temperature gradient with the turbulence whereas in the experiment 
the heated grid probably produced temperature fluctuations. A disconcerting aspect of 
the experimental data is that it shows an increase in turbulence level with distance while 
the analysis shows a decrease. The increase shown in the experiment might be caused 
by lateral inhomogenieties in the turbulence, boundary layer effects, or by triple correla- 
tion effects. All these effects were neglected in the analysis. 

- 

. 
I 

SUMMARY OF RESULTS 

The analytical results for combined effects of vertical buoyancy forces and vertical 
velocity gradients indicate that, as in the case of no shear, destabilizing buoyancy forces 
can feed energy or activity into a turbulent field whereas stabilizing buoyancy forces can 
extract it. The effect of the shear is to feed energy or activity into the turbulent field. 
Thus for the destabilizing case, the buoyancy and shear have similar effects; but for the 
stabilizing case, they work in opposite directions. 

tex filaments by the mean velocity gradient causes the spectra to become asymmetric; 
the slopes on the high-wave-number sides of the spectra become more gradual. 

component in comparison to the horizontal component in the flow direction while the 
shear tends to  decrease it. For weakly stabilizing conditions both the buoyancy and 
shear tend to  decrease the ratio of vertical t o  horizontal turbulence components. For 
more strongly stabilizing conditions, the trends become less  well defined. 

The shear tends to d i n e  the turbulent vorticity in the direction of maximum mean 
strain, which is 45' from the flow direction. Destabilizing buoyancy forces tend to aline 
the vorticity in horizontal directions whereas stabilizing forces tend to aline it vertically. 

can be negative. This result appears reasonable when considered from the standpoint of 
a modified mixing length theory. Turbulent heat transfer occurs in a horizontal as well 
as a vertical direction, even though the velocity and temperature gradients are both 
vertical. 

Energy or activity transfer between wave numbers by the stretching of turbulent vor- 

For the destabilizing case, buoyancy forces tend to increase the vertical turbulence 

When buoyancy forces are strongly stabilizing, the eddy conductivity and viscosity 

Comparison of analytical with experimental results indicates that the former bear a 
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reasonable correspondence with results for observed turbulence, although the conditions 
in the experiment differed somewhat from those assumed in the analysis. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, November 22, 1966, 
129-01- 09- 07-22. 
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APPENDIX - SYMBOLS 

vertical velocity gradient, dUl/dx3 

shear parameter, defined by 
eq. (56) 

vertical temperature gradient, 
W d x 3  

-g3, vertical body force/unit mass 
in -x3 - direction (gravitational 
force/unit mass) 

vertical body force/unit mass 

body force component/unit mass 
2 buoyancy parameter, Pg(t - to) 

constant that depends on initial 

dT/&3 

conditions 

Prandtl number, u / a  

pressure 

vector between points P and P' 

Richardson number, defined by 
eq. (57) 

mean temperature 

time 

mean velocity component 

fluctuating velocity component 

" uiuj 
JO 

space coordinate 

thermal diffusivity 

expansion coefficient 

defined by eq. (67) 

T U i  

TUf 

defined by eq. (21) 

defined by eq. (22) 

defined by eq. (54) 

defined by eq. (67) 

defined by eq. (23) 

Kronecker delta 

defined by eq. (55) 

eddy viscosity 

eddy conductivity 

defined by eq. (19) 

defined by eq. (20) 

running or dummy variable that 

3 equals t when 5 = K 

angular coordinates (see eq. (59)) 

wave number component 

defined by eq. (51) 

defined by ea-. (67) 

defined by eq. (17) 

defined by eq. (18) 

kinematic viscosity 

running or dummy variable for 
which K~ is a particular value 

density 

temperature fluctuation 

temperature- velocity correlation 

v5/2(t - t0)3/2 5 
JO b 
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0 0  i j  

r 

Job2 

defined by eq. (16) 

defined by eq. (53) 

defined by eq. (67) 

v2(t - to) 2 

'ij 
JO 

given by eq. (68) 

turbulent vorticity variance 

Subscripts : 

0 at virtual origin of turbulence 
where turbulent energy would be 
infinite (It is assumed that turbu- 
lence is isotropic at xo and 
that velocity and temperature 
gradients begin to act there) 

1 in flow direction 

3 in vertical direction, which is di- 
rection of mean velocity gradient 
and buoyancy force 

Superscripts: 
1 at  point P', also refers  to coordi- 

nate system rotated 45' 

* on dimensionless quantities 

- over averaged quantities 
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